One of the really cool things about the 1.3 kg of ChimpWare between our ears is the way it learns.

We have evolved the ability to predict the likely near-future based on a small number of past experiences.

And we do that by creating stored mental models.

Not even the most powerful computers can do it as well as we do – and we doing it without thinking. Literally. It is an unconscious process.

This ability to pro-gnose (‘know before’) gave our ancestors a major survival advantage when we were wandering about on the savanna over 10 million years ago, and we have used this amazing capability to build societies, mega-cities and spaceships.


But this ability is not perfect – it has a flaw – our ChimpOS does not store a picture of reality like a digital camera, it stores a patchy and distorted perception of reality – and then fills in the gaps with guesses (i.e. gaffes).  And we do not notice – consciously.

The cognitive trap is set and sits waiting to be sprung and to trip us up.


Here is an example:

“Improvement implies change”

Yes. That is a valid statement because we can show that whenever improvement has been the effect, then some time before that a change happened.  And we can show that when there are no changes, the system continues to behave as it always has.  Status quo.

The cognitive trap is that our ChimpOS is very good at remembering temporal associations – for example an association between “improvement” and “change” because we remember in the present. So if two concepts are presented at the same time, and we spice the pie with some emotion, then we are more likely to associate them.

The problem comes when we play back the memory … it can come back as …

“change implies improvement” which is not valid.  And we do not notice.

To prove it is not valid we just need to find one example where a change led to a deterioration; an unintended negative consequence, a surprising, confusing and disappointing failure to achieve our intended improvement.

An embarrassing gap between our intent and our impact.

And finding that evidence is not hard. Failures and disappointments in the world of improvement are all too common.


And then we fall into the same cognitive trap because we generalise from a single, bad experience and the lesson our ChimpOS stores for future reference is “change is bad”.

And forever afterwards we feel anxious whenever the idea of change is suggested.

And it is a very effective survival tactic – for a hominid living on the African savanna 10 million years ago, and at risk of falling prey to sharp-fanged, hungry predators.  It is a less useful tactic in the modern world where the risk of being eaten-for-lunch is minimal, and where the pace of change is accelerating.  We must learn to innovate and improve to survive in the social jungle … and we are not well equipped!


Here is another common cognitive trap:

Excellence implies no failures.

Yes. If we are delivering a consistently excellent service then the absence of failures will be a noticeable feature.

No failures implies excellence.

Sadly, this is not a valid inference.  If quality-of-service is measured on a continuum from Excrement-to-Excellent, then we can be delivering a consistently mediocre service, one that is barely adequate, and also have no failures.


The design flaw here is that our ChimpWare/ChimpOS memory system is lossy.

We do not remember all the information required to reconstruct an accurate memory of reality – there is too much information – so we distort, we delete and we generalise.  And we do that because when we evolved it was a good enough solution, and it enabled us to survive as a species, so the ChimpWare/ChimpOS genes were passed on.

We cannot reverse millions of years of evolution.  We cannot get a hardware or software upgrade.  We need to learn to manage with the limitations of what we have between our ears.

And to avoid the cognitive traps we need to practice the discipline of bringing our unconscious assumptions into conscious awareness … and we do that by asking carefully framed questions.

Here is another example to practice with:

A high-efficiency design implies high-utilisation of resources.

Yes, that is valid. Idle resources means wasted resources which means lower efficiency.

Q1: Is the converse also valid?
Q2: Is there any evidence that disproves the converse is valid?

If high-utilisation does not imply high-efficiency, what are the implications of falling into this cognitive trap?  What is the value of measuring utilisation? Does it have a value?

These are useful questions.

When a system reaches the limit of its resilience, it does not fail gradually; it fails catastrophically.  Up until the point of collapse the appearance of stability is reassuring … but it is an illusion.

A drowning person kicks frantically until they are exhausted … then they sink very quickly.

Below is the time series chart that shows the health of the UK Emergency Health Care System from 2011 to the present.

The seasonal cycle is made obvious by the regular winter dips. The progressive decline in England, Wales and NI is also clear, but we can see that Scotland did something different in 2015 and reversed the downward trend and sustained that improvement.

Until, the whole system failed in the winter of 2017/18. Catastrophically.

The NHS is a very complicated system so what hope do we have of understanding what is going on?


The human body is also a complicated system.

In the 19th Century, a profound insight into how the human body works was proposed by the French physiologist, Claude Bernard.

He talked about the stability of the milieu intérieur and his concept came to be called homeostasis: The principle that a self-regulating system can maintain its own stability over a wide range.  In other words, it demonstrates resilience to variation.

The essence of a homeostatic system is that the output is maintained using a compensatory feedback loop, one that is assembled by connecting sensors to processors to effectors. Input-Process-Output (IPO).

And to assess how much stress the whole homeostatic system is under, we do not measure the output (because that is maintained steady by the homeostatic feedback design), instead we measure how hard the stabilising feedback loop is working!


And, when the feedback loop reaches the limit of its ability to compensate, the whole system will fail.  Quickly. Catastrophically.  And when this happens in the human body we call this a “critical illness”.

Doctors know this.  Engineers know this.  But do those who decide and deliver health care policy know this?  The uncomfortable evidence above suggests that they might not.

The homeostatic feedback loop is the “inner voice” of the system.  In the NHS it is the collective voices of those at the point of care who sense the pressure and who are paddling increasingly frantically to minimize risk and to maintain patient safety.

And being deaf to that inner voice is a very dangerous flaw in the system design!


Once a complicated system has collapsed, then it is both difficult and expensive to resuscitate and recover, especially if the underpinning system design flaws are not addressed.

And, if we learn how to diagnose and treat these system design errors, then it is possible to “flip” the system back into stable and acceptable performance.

Surprisingly quickly.


Read on »

It is that time of year – again.

Winter.

The NHS is struggling, front-line staff are having to use heroic measures just to keep the ship afloat, and less urgent work has been suspended to free up space and time to help man the emergency pumps.

And the finger-of-blame is being waggled by the army of armchair experts whose diagnosis is unanimous: “lack of cash caused by an austerity triggered budget constraint”.


And the evidence seems plausible.

The A&E performance data says that each year since 2009, the proportion of patients waiting more than 4 hours in A&Es has been increasing.  And the increase is accelerating. This is a progressive quality failure.

And health care spending since the NHS was born in 1948 shows a very similar accelerating pattern.    

So which is the chicken and which is the egg?  Or are they both symptoms of something else? Something deeper?


Both of these charts are characteristic of a particular type of system behaviour called a positive feedback loop.  And the cost chart shows what happens when someone attempts to control the cash by capping the budget:  It appears to work for a while … but the “pressure” is building up inside the system … and eventually the cash-limiter fails. Usually catastrophically. Bang!


The quality chart shows an associated effect of the “pressure” building inside the acute hospitals, and it is a very well understood phenomenon called an Erlang-Kingman queue.  It is caused by the inevitable natural variation in demand meeting a cash-constrained, high-resistance, high-pressure, service provider.  The effect is to amplify the natural variation and to create something much more dangerous and expensive: chaos.


The simple line-charts above show the long-term, aggregated  effects and they hide the extremely complicated internal structure and the highly complex internal behaviour of the actual system.

One technique that system engineers use to represent this complexity is a causal loop diagram or CLD.

The arrows are of two types; green indicates a positive effect, and red indicates a negative effect.

This simplified CLD is dominated by green arrows all converging on “Cost of Care”.  They are the positive drivers of the relentless upward cost pressure.

Health care is a victim of its own success.

So, if the cash is limited then the naturally varying demand will generate the queues, delays and chaos that have such a damaging effect on patients, providers and purses.

Safety and quality are adversely affected. Disappointment, frustration and anxiety are rife. Expectation is lowered.  Confidence and trust are eroded.  But costs continue to escalate because chaos is expensive to manage.

This system behaviour is what we are seeing in the press.

The cost-constraint has, paradoxically, had exactly the opposite effect, because it is treating the effect (the symptom) and ignoring the cause (the disease).


The CLD has one negative feedback loop that is linked to “Efficiency of Processes”.  It is the only one that counteracts all of the other positive drivers.  And it is the consequence of the “System Design”.

What this means is: To achieve all the other benefits without the pressures on people and purses, all the complicated interdependent processes required to deliver the evolving health care needs of the population must be proactively designed to be as efficient as technically possible.


And that is not easy or obvious.  Efficient design does not happen naturally.  It is hard work!  It requires knowledge of the Anatomy and Physiology of Systems and of the Pathology of Variation.  It requires understanding how to achieve effectiveness and efficiency at the same time as avoiding queues and chaos.  It requires that the whole system is continually and proactively re-designed to remain reliable and resilient.

And that implies it has to be done by the system itself; and that means the NHS needs embedded health care systems engineering know-how.

And when we go looking for that we discover sequence of gaps.

An Awareness gap, a Belief gap and a Capability gap. ABC.

So the first gap to fill is the Awareness gap.

The New Year of 2018 has brought some unexpected challenges. Or were they?

We have belligerent bullies with their fingers on their nuclear buttons.

We have an NHS in crisis, with corridor-queues of urgent frail, elderly, unwell and a month of cancelled elective operations.

And we have winter storms, fallen trees, fractured power-lines, and threatened floods – all being handled rather well by people who are trained to manage the unexpected.

Which is the title of this rather interesting book that talks a lot about HROs.

So what are HROs?


“H” stands for High.  “O” stands for Organisation.

What does R stand for?  Rhetoric? Rigidity? Resistance?

Watching the news might lead one to suggest these words would fit … but they are not the answer.

“R” stands for Reliability and “R” stands for Resilience … and they are linked.


Think of a global system that is so reliable that we all depend on it, everyday.  The Global Positioning System or the Internet perhaps.  We rely on them because they serve a need and because they work. Reliably and resiliently.

And that was no accident.

Both the Internet and the GPS were designed and built to meet the needs of billions and to be reliable and resilient.  They were both created by an army of unsung heroes called systems engineers – who were just doing their job. The job they were trained to do.


The NHS serves a need – and often an urgent one, so it must also be reliable. But it is not.

The NHS needs to be resilient. It must cope with the ebb and flow of seasonal illness. But it does not.

And that is because the NHS has not been designed to be either reliable or resilient. And that is because the NHS has not been designed.  And that is because the NHS does not appear to have enough health care systems engineers trained to do that job.

But systems engineering is a mature discipline, and it works just as well inside health care as it does outside.


And to support that statement, here is evidence of what happened after a team of NHS clinicians and managers were trained in the basics of HCSE.

Monklands A&E Improvement

So the gap seems to be just an awareness/ability gap … which is a bridgeable one.


Who would like to train to be a Health Case Systems Engineer and to join the growing community of HCSE practitioners who have the potential to be the future unsung heroes of the NHS?

Click here if you are interested: http://www.ihcse.uk

PS. “Managing the Unexpected” is an excellent introduction to SE.

It had been some time since Bob and Leslie had chatted so an email from the blue was a welcome distraction from a complex data analysis task.

<Bob> Hi Leslie, great to hear from you. I was beginning to think you had lost interest in health care improvement-by-design.

<Leslie> Hi Bob, not at all.  Rather the opposite.  I’ve been very busy using everything that I’ve learned so far.  It’s applications are endless, but I have hit a problem that I have been unable to solve, and it is driving me nuts!

<Bob> OK. That sounds encouraging and interesting.  Would you be able to outline this thorny problem and I will help if I can.

<Leslie> Thanks Bob.  It relates to a big issue that my organisation is stuck with – managing urgent admissions.  The problem is that very often there is no bed available, but there is no predictability to that.  It feels like a lottery; a quality and safety lottery.  The clinicians are clamoring for “more beds” but the commissioners are saying “there is no more money“.  So the focus has turned to reducing length of stay.

<Bob> OK.  A focus on length of stay sounds reasonable.  Reducing that can free up enough beds to provide the necessary space-capacity resilience to dramatically improve the service quality.  So long as you don’t then close all the “empty” beds to save money, or fall into the trap of believing that 85% average bed occupancy is the “optimum”.

<Leslie> Yes, I know.  We have explored all of these topics before.  That is not the problem.

<Bob> OK. What is the problem?

<Leslie> The problem is demonstrating objectively that the length-of-stay reduction experiments are having a beneficial impact.  The data seems to say they they are, and the senior managers are trumpeting the success, but the people on the ground say they are not. We have hit a stalemate.


<Bob> Ah ha!  That old chestnut.  So, can I first ask what happens to the patients who cannot get a bed urgently?

<Leslie> Good question.  We have mapped and measured that.  What happens is the most urgent admission failures spill over to commercial service providers, who charge a fee-per-case and we have no choice but to pay it.  The Director of Finance is going mental!  The less urgent admission failures just wait on queue-in-the-community until a bed becomes available.  They are the ones who are complaining the most, so the Director of Governance is also going mental.  The Director of Operations is caught in the cross-fire and the Chief Executive and Chair are doing their best to calm frayed tempers and to referee the increasingly toxic arguments.

<Bob> OK.  I can see why a “Reduce Length of Stay Initiative” would tick everyone’s Nice If box.  So, the data analysts are saying “the length of stay has come down since the Initiative was launched” but the teams on the ground are saying “it feels the same to us … the beds are still full and we still cannot admit patients“.

<Leslie> Yes, that is exactly it.  And everyone has come to the conclusion that demand must have increased so it is pointless to attempt to reduce length of stay because when we do that it just sucks in more work.  They are feeling increasingly helpless and hopeless.

<Bob> OK.  Well, the “chronic backlog of unmet need” issue is certainly possible, but your data will show if admissions have gone up.

<Leslie> I know, and as far as I can see they have not.

<Bob> OK.  So I’m guessing that the next explanation is that “the data is wonky“.

<Leslie> Yup.  Spot on.  So, to counter that the Information Department has embarked on a massive push on data collection and quality control and they are adamant that the data is complete and clean.

<Bob> OK.  So what is your diagnosis?

<Leslie> I don’t have one, that’s why I emailed you.  I’m stuck.


<Bob> OK.  We need a diagnosis, and that means we need to take a “history” and “examine” the process.  Can you tell me the outline of the RLoS Initiative.

<Leslie> We knew that we would need a baseline to measure from so we got the historical admission and discharge data and plotted a Diagnostic Vitals Chart®.  I have learned something from my HCSE training!  Then we planned the implementation of a visual feedback tool that would show ward staff which patients were delayed so that they could focus on “unblocking” the bottlenecks.  We then planned to measure the impact of the intervention for three months, and then we planned to compare the average length of stay before and after the RLoS Intervention with a big enough data set to give us an accurate estimate of the averages.  The data showed a very obvious improvement, a highly statistically significant one.

<Bob> OK.  It sounds like you have avoided the usual trap of just relying on subjective feedback, and now have a different problem because your objective and subjective feedback are in disagreement.

<Leslie> Yes.  And I have to say, getting stuck like this has rather dented my confidence.

<Bob> Fear not Leslie.  I said this is an “old chestnut” and I can say with 100% confidence that you already have what you need in your T4 kit bag?

<Leslie>Tee-Four?

<Bob> Sorry, a new abbreviation. It stands for “theory, techniques, tools and training“.

<Leslie> Phew!  That is very reassuring to hear, but it does not tell me what to do next.

<Bob> You are an engineer now Leslie, so you need to don the hard-hat of Improvement-by-Design.  Start with your Needs Analysis.


<Leslie> OK.  I need a trustworthy tool that will tell me if the planned intervention has has a significant impact on length of stay, for better or worse or not at all.  And I need it to tell me that quickly so I can decide what to do next.

<Bob> Good.  Now list all the things that you currently have that you feel you can trust.

<Leslie> I do actually trust that the Information team collect, store, verify and clean the raw data – they are really passionate about it.  And I do trust that the front line teams are giving accurate subjective feedback – I work with them and they are just as passionate.  And I do trust the systems engineering “T4” kit bag – it has proven itself again-and-again.

<Bob> Good, and I say that because you have everything you need to solve this, and it sounds like the data analysis part of the process is a good place to focus.

<Leslie> That was my conclusion too.  And I have looked at the process, and I can’t see a flaw. It is driving me nuts!

<Bob> OK.  Let us take a different tack.  Have you thought about designing the tool you need from scratch?

<Leslie> No. I’ve been using the ones I already have, and assume that I must be using them incorrectly, but I can’t see where I’m going wrong.

<Bob> Ah!  Then, I think it would be a good idea to run each of your tools through a verification test and check that they are fit-4-purpose in this specific context.

<Leslie> OK. That sounds like something I haven’t covered before.

<Bob> I know.  Designing verification test-rigs is part of the Level 2 training.  I think you have demonstrated that you are ready to take the next step up the HCSE learning curve.

<Leslie> Do you mean I can learn how to design and build my own tools?  Special tools for specific tasks?

<Bob> Yup.  All the techniques and tools that you are using now had to be specified, designed, built, verified, and validated. That is why you can trust them to be fit-4-purpose.

<Leslie> Wooohooo! I knew it was a good idea to give you a call.  Let’s get started.


[Postscript] And Leslie, together with the other stakeholders, went on to design the tool that they needed and to use the available data to dissolve the stalemate.  And once everyone was on the same page again they were able to work collaboratively to resolve the flow problems, and to improve the safety, flow, quality and affordability of their service.  Oh, and to know for sure that they had improved it.

One of the quickest and easiest ways to kill an improvement initiative stone dead is to label it as a “cost improvement program” or C.I.P.

Everyone knows that the biggest single contributor to cost is salaries.

So cost reduction means head count reduction which mean people lose their jobs and their livelihood.

Who is going to sign up to that?

It would be like turkeys voting for Xmas.

There must be a better approach?

Yes. There is.


Over the last few weeks, groups of curious skeptics have experienced the immediate impact of systems engineering theory, techniques and tools in a health care context.

They experienced queues, delays and chaos evaporate in front of their eyes … and it cost nothing to achieve. No extra resources. No extra capacity. No extra cash.

Their reaction was “surprise and delight”.

But … it also exposed a problem.  An undiscussable problem.


Queues and chaos require expensive resources to manage.

We call them triagers, progress-chasers, and fire-fighters.  And when the queues and chaos evaporate then their jobs do too.

The problem is that the very people who are needed to make the change happen are the ones who become surplus-to-requirement as a result of the change.

So change does not happen.

It would like turkeys voting for Xmas.


The way around this impasse is to anticipate the effect and to proactively plan to re-invest the resource that is released.  And to re-invest it doing a more interesting and more worthwhile jobs than queue-and-chaos management.

One opportunity for re-investment is called time-buffering which is an effective way to improve resilience to variation, especially in an unscheduled care context.

Another opportunity for re-investment is tail-gunning the chronic backlogs until they are down to a safe and sensible size.

And many complain that they do not have time to learn about improvement because they are too busy managing the current chaos.

So, another opportunity for re-investment is training – oneself first and then others.


R.I.P.    C.I.P.

The NHS appears to be descending in a frenzy of fear as the winter looms and everyone says it will be worse than last and the one before that.

And with that we-are-going-to-fail mindset, it almost certainly will.

Athletes do not start a race believing that they are doomed to fail … they hold a belief that they can win the race and that they will learn and improve even if they do not. It is a win-win mindset.

But to succeed in sport requires more than just a positive attitude.

It also requires skills, training, practice and experience.

The same is true in healthcare improvement.


That is not the barrier though … the barrier is disbelief.

And that comes from not having experienced what it is like to take a system that is failing and transform it into one that is succeeding.

Logically, rationally, enjoyably and surprisingly quickly.

And, the widespread disbelief that it is possible is paradoxical because there are plenty of examples where others have done exactly that.

The disbelief seems to be “I do not believe that will work in my world and in my hands!

And the only way to dismantle that barrier-of-disbelief is … by doing it.


How do we do that?

The emotionally safest way is in a context that is carefully designed to enable us to surface the unconscious assumptions that are the bricks in our individual Barriers of Disbelief.

And to discard the ones that do not pass a Reality Check, and keep the ones that are OK.

This Disbelief-Busting design has been proven to be effective, as evidenced by the growing number of individuals who are learning how to do it themselves, and how to inspire, teach and coach others to as well.


So, if you would like to flip disbelief-and-hopeless into belief-and-hope … then the door is here.

It is always rewarding when separate but related ideas come together and go “click”.

And this week I had one of those “ah ha” moments while attempting to explain how the process of engagement works.

Many years ago I was introduced to the conscious-competence model of learning which I found really insightful.  Sometime later I renamed it as the awareness-ability model because the term competence felt too judgmental.

The idea is that when we learn we all start from a position of being unaware of our inability.

A state called blissful ignorance.

And it is only when we try to do something that we become aware of what we cannot do; which can lead to temper tantrums!

As we concentrate and practice our ability improves and we enter the zone of know how.  We become able to demonstrate what we can do, and explain how we are doing it.

The final phase comes when it becomes so habitual that we forget how we learned our skill – it has become second nature.


Some years later I was introduced to the Nerve Curve which is the emotional roller-coaster ride that accompanies change.  Any form of change.

A five-step model was described in the context of bereavement by psychiatrist Elisabeth Kübler-Ross in her 1969 book “On Death & Dying: What the Dying Have to Teach Doctors, Nurses, Clergy and their Families.

More recently this has been extended and applied by authors such as William Bridges and John Fisher in the less emotionally traumatic contexts called transitions.

The characteristic sequence of emotions are triggered by external events are:

  • shock
  • denial
  • frustration
  • blame
  • guilt
  • depression
  • acceptance
  • engagement
  • excitement.

The important messages in both of these models is that we can get stuck along the path of transition, and we can disengage at several points, signalling to others that we have come off the track.  When we do that we exhibit behaviours such as denial, disillusionment and hostility.


More recently I was introduced to the work of the late Chris Argyris and specifically the concept of “defensive reasoning“.

The essence of the concept:  As we start to become aware of a gap between our intentions and our impact, then we feel threatened and our natural reaction is defensive.  This is the essence of the behaviour called “resistance to change”, and it is interesting to note that “smart” people are particularly adept at it.


These three concepts are clearly related in some way … but how?


As a systems engineer I am used to cyclical processes and the concepts of wavelength, amplitude, phase and offset, and I found myself looking at the Awareness-Ability cycle and asking:

“How could that cycle generate the characteristic shape of the transition curve?”

Then the Argyris idea of the gap between intent and impact popped up and triggered another question:

“What if we look at the gap between our ability and our awareness?”

So, I conducted a thought experiment and imagined myself going around the cycle – and charting my ability, awareness and emotional state along the way … and this sketch emerged. Ah ha!

When my awareness exceeded my ability I felt disheartened. That is the defensive reasoning that Chris Argyris talks about, the emotional barrier to self-improvement.


Ability – Awareness = Engagement


This suggested to me that the process of building self-engagement requires opening the ability-versus-awareness gap a little-bit-at-a-time, sensing the emotional discomfort, and then actively releasing the tension by learning a new concept, principle, technique or tool (and usually all four).

Eureka!

I wonder if the same strategy would work elsewhere?

The first step in a design conversation is to understand the needs of the customer.

It does not matter if you are designing a new kitchen, bathroom, garden, house, widget, process, or system.  It is called a “needs analysis”.

Notice that it is not called a “wants analysis”.  They are not the same thing because there is often a gap between what we want (and do not want) and what we need (and do not need).

The same is true when we are looking to use a design-based approach to improve something that we already have.


This is especially true when we are improving services because the the needs and wants of a service tend to drift and shift continuously, and we are in a continual state of improvement.

For design to work the “customers” and the “suppliers” need work collaboratively to ensure that they both get what they need.

Frustration and fragmentation are the symptoms of a combative approach where a “win” for one is a “lose” for the other (NB. In absolute terms both will end up worse off than they started so both lose in the long term.)


And there is a tried and tested process to collaborative improvement-by-design.

One version is called “experience based co-design” (EBCD) and it was cooked up in a health care context about 20 years ago and shown to work in a few small pilot studies.

The “experience” that triggered the projects was almost always a negative one and was associated with feelings of frustration, anxiety and disappointment. So, the EBCD case studies were more focused on helping the protagonists to share their perspectives, in the belief that will be enough to solve the problem.  And it is indeed a big step forwards.

It has a limitation though.  It assumes that the staff and patients know how to design processes so that they are fit-4-purpose, and the evidence to support that assumption is scanty.

In one pilot in mental health, the initial improvement (a fall in patient and carer complaints) was not sustained.  The reason given was that the staff who were involved in the pilot inevitably moved on, and as they did the old attitudes, beliefs and behaviours returned.


So, an improved version of EBCD is needed.  One that is based on hard evidence of what works and what does not.  One that is also focused on moving towards a future-purpose rather than just moving away from past-problems.

Let us call this improved version “Evidence-Based Co-Design“.

And we already know that by a different name:

Health Care Systems Engineering (HCSE).

OODA is something we all do thousands of times a day without noticing.

Observe – Orient – Decide – Act.

The term is attributed to Colonel John Boyd, a real world “Top Gun” who studied economics and engineering, then flew and designed fighter planes, then became a well-respected military strategist.

OODA is a continuous process of updating our mental model based on sensed evidence.

And it is a fast process because happens largely out of awareness.

This was Boyd’s point: In military terms, the protagonist that can make wiser and faster decisions are more likely to survive in combat.


And notice that it is not a simple linear sequence … it is a system … there are parallel paths and both feed-forward and feed-backward loops … there are multiple information flow paths.

And notice that the Implicit Guidance & Control links do not go through Decision – this means they operate out of awareness and are much faster.

And notice the Feed Forward links link the OODA steps – this is the conscious, sequential, future looking process that we know by another name:

Study-Adjust-Plan-Do.


We use the same process in medicine: first we study the patient and the problem they are presenting (history, examination, investigation), then we adjust our generic mental model of how the body works to the specific patient (diagnosis), then we plan and decide a course of action to achieve the intended outcome, and then we act, we do it (treatment).

But at any point we can jump back to an earlier step and we can jump forwards to a later one.  The observe, orient, decide, act modes are running in parallel.

And the more experience we have of similar problems the faster we can complete the OODA (or SAPD) work because we learn what is the most useful information to attend to, and we learn how to interpret it.

We learn the patterns and what to look for – and that speeds up the process – a lot!


This emergent learning is then re-inforced if the impact of our action matches our intent and prediction and our conscious learning is then internalised as unconscious “rules of thumb” called heuristics.


We start by thinking our way consciously and slowly … and … we finish by feeling our way unconsciously and quickly.


Until … we  encounter a novel problem that does not fit any of our learned pattern matching neural templates. When that happens, our unconscious, parallel processing, pattern-matching system alerts us with a feeling of confusion and bewilderment – and we freeze (often with fright!)

Now we have a choice: We can retreat to using familiar, learned, reactive, knee-jerk patterns of behaviour (presumably in the hope that they will work) or we can switch into a conscious learning loop and start experimenting with novel ideas.

If we start at Hypothesis then we have the Plan-Do-Study-Act cycle; where we generate novel hypotheses to explain the unexpected, and we then plan experiments to test our hypotheses; and we then study the outcome of the experiments and we then we act on our conclusions.

This mindful mode of thinking is well described in the book “Managing the Unexpected” by Weick and Sutcliffe and is the behaviour that underpins the success of HROs – High Reliability Organisations.

The image is of the latest (3rd edition) but the previous (2nd edition) is also worth reading.

So we have two interdependent problem solving modes – the parallel OODA system and the sequential SAPD process.

And we can switch between them depending on the context.


Which is an effective long-term survival strategy because the more we embrace the unexpected, the more opportunities we will have to switch into exploration mode and learn new patterns; and the more patterns we recognise the more efficient and effective our unconscious decision-making process will become.

This complex adaptive system behaviour has another name … Resilience.

“Those who cannot remember the past are condemned to repeat it”.

Aphorism by George Santayana, philosopher (1863-1952).

And the history of quality improvement (QI) is worth reflecting on, because there is massive pressure to grow QI capability in health care as a way of solving some chronic problems.

The chart below is a Google Ngram, it was generated using some phrases from the history of Quality Improvement:

TQM = the total quality management movement that grew from the work of Walter Shewhart in the 1920’s and 30’s and was “incubated” in Japan after being transplanted there by Shewhart’s student W. Edwards Deming in the 1950’s.
ISO 9001 = an international quality standard first published in 2000 that developed from the British Standards Institute (BSI) in the 1970’s via ISO 9000 that was first published in 1987.
Six Sigma = a highly statistical quality improvement / variation reduction methodology that originated in the rapidly expanding semiconductor industry in the 1980’s.

The rise-and-fall pattern is characteristic of how innovations spread; there is a long lag phase, then a short accelerating growth phase, then a variable plateau phase and then a long, decelerating decline phase.

It is called a life-cycle. It is how complex adaptive systems behave. It is how innovations spread. It is expected.

So what happened?

Did the rise of TQM lead to the rise of ISO 9000 which triggered the development of the Six Sigma methodology?

It certainly looks that way.

So why is Six Sigma “dying”?  Or is it just being replaced by something else?


This is the corresponding Ngram for “Healthcare Quality Improvement” which seems to sit on the timeline in about the same place as ISO 9001 and that suggests that it was triggered by the TQM movement. 

The Institute of Healthcare Improvement (IHI) was officially founded in 1991 by Dr Don Berwick, some years after he attended one of the Deming 4-day workshops and had an “epiphany”.

Don describes his personal experience in a recent plenary lecture (from time 01:07).  The whole lecture is worth watching because it describes the core concepts and principles that underpin QI.


So given the fact that safety and quality are still very big issues in health care – why does the Ngram above suggest that the use of the term Quality Improvement does not sustain?

Will that happen in healthcare too?

Could it be that there is more to improvement than just a focus on safety (reducing avoidable harm) and quality (improving patient experience)?

Could it be that flow and productivity are also important?

The growing angst that permeates the NHS appears to be more focused on budgets and waiting-time targets (4 hrs in A&E, 63 days for cancer, 18 weeks for scheduled care, etc.).

Mortality and Quality hardly get a mention any more, and the nationally failed waiting time targets are being quietly dropped.

Is it too politically embarrassing?

Has the NHS given up because it firmly believes that pumping in even more money is the only solution, and there isn’t any more in the tax pot?


This week another small band of brave innovators experienced, first-hand, the application of health care systems engineering (HCSE) to a very common safety, flow, quality and productivity problem …

… a chronically chaotic clinic characterized by queues and constant calls for more capacity and cash.

They discovered that the queues, delays and chaos (i.e. a low quality experience) were not caused by lack of resources; they were caused by flow design.  They were iatrogenic.  And when they applied the well-known concepts and principles of scheduling design, they saw the queues and chaos evaporate, and they measured a productivity increase of over 60%.

OMG!

Improvement science is more than just about safety and quality, it is about flow and productivity as well; because we all need all four to improve at the same time.

And yes we need all the elements of Deming’s System of Profound Knowledge (SoPK), but need more than that.  We need to harness the knowledge of the engineers who for centuries have designed and built buildings, bridges, canals, steam engines, factories, generators, telephones, automobiles, aeroplanes, computers, rockets, satellites, space-ships and so on.

We need to revisit the legacy of the engineers like Watt, Brunel, Taylor, Gantt, Erlang, Ford, Forrester and many, many others.

Because it does appear to be possible to improve-by-design as well as to improve-by-desire.

Here is the Ngram with “Systems Engineering” (SE) added and the time line extended back to 1955.  Note the rise of SE in the 1950’s and 1960’s and note that it has sustained.

That pattern of adoption only happens when something is proven to be fit-4-purpose, and is valued and is respected and is promoted and is taught.

What opportunity does systems engineering offer health care?

That question is being actively explored … here.

This week a ground-breaking case study was published.

It describes how a team in South Wales discovered how to make the flows visible in a critical part of their cancer pathway.

Radiology.

And they did that by unintentionally falling into a trap!  A trap that many who set out to improve health care services fall into.  But they did not give up.  They sought guidance and learned some profound lessons.

Part 1 of their story is shared here.


One lesson they learned is that, as they take on more complex improvement challenges, they need to be equipped with the right tools, and they need to be trained to use them, and they need to have practiced using them.

Another lesson they learned is that making the flows in a system visible is necessary before the current behaviour of the system can be understood.

And they learned that they needed a clear diagnosis of how the current system is not performing; before they can attempt to design an intervention to deliver the intended improvement.

They learned how the Study-Plan-Do cycle works, and they learned the reason it starts with “Study”, and not with “Plan”.


They tried, failed, took one step back, asked, listened and learned.


Then with their new knowledge, more advanced tools, and deeper understanding they took two steps forward; diagnosed problem, designed an intervention, and delivered a significant improvement.

And visualised just how significant.

Then they shared Part 2 of their story … here.

 

 

The NHS appears to be getting increasingly desperate in its cost control tactics:


What does this letter say …

  1. The NHS is required to improve productivity by 20%.
  2. The NHS needs to work collaboratively with its suppliers.
  3. The NHS would like to learn the “secrets” from its suppliers.
  4. And then a thinly-veiled threat.

A 20% productivity improvement has never been achieved before using a Cost Improvement Program (CIP) approach … so how will it now?

A 20% productivity improvement requires something a lot more radical than a “zero-inflation policy”.

A 20% productivity improvement requires wholesale system redesign.

And there is good news … that is possible … and the not-so-good news is that the NHS will need to learn how to do it, for itself.


One barrier to doing this is disbelief that it is possible.

Another is ignorance of how to do it.


If the NHS wants to survive, in anything like its current form, then it will need to grasp that nettle/opportunity … and to engage in wholesale raising of awareness of what is possible and how to achieve it.

Denial is not an option.

And there is one way to experience what is possible and how to achieve it … and it can be accessed here.


The seats on the HCSE bus are limited, so only those who are prepared to invest in their own learning and their own future career paths should even consider buying a ticket to ride …

… and follow the footsteps of the courageous innovators.

Here are some of their stories: Journal of Improvement Science

Beliefs drive behaviour. Behaviour drives change. Improvement requires change.

So, improvement requires challenging beliefs; confirming some and disproving others.

And beliefs can only be confirmed or disproved rationally – with evidence and explanation. Rhetoric is too slippery. We can convince ourselves of anything with that!

So it comes as an emotional shock when one of our beliefs is disproved by experiencing reality from a new perspective.

Our natural reaction is surprise, perhaps delight, and then defense. We say “Yes, but ...”.

And that is healthy skepticism and it is a valuable and necessary part of the change and improvement process.

If there are not enough healthy skeptics on a design team it is unbalanced.

If there are too many healthy skeptics on a design team it is unbalanced.


This week I experienced this phenomenon first hand.

The context was a one day practical skills workshop and the topic was:

How to improve the safety, timeliness, quality and affordability of unscheduled care“.

The workshop is designed to approach this challenge from a different perspective.

Instead of asking “What is the problem and how do we solve it?” we took the system engineering approach of asking “What is the purpose and how can we achieve it?”

We used a range of practical exercises to illustrate some core concepts and principles – reality was our teacher. Then we applied those newly acquired insights to the design challenge using a proven methodology that ensured we do not skip steps.


And the outcome was: the participants discovered that …

it is indeed possible to improve the safety, timeliness, quality and affordability of unscheduled health care …

using health care systems engineering concepts, principles, techniques and tools that, until the workshop, they had been unaware even existed.


Their reaction was “OMG” and was shortly followed by “Yes, but …” which is to be expected and is healthy.

The rest of the “Yes, but … ” sentence was “… how will I convince my colleagues?

One way is for them to seek out the same experience …

… because reality is a much better teacher than rhetoric.

HCSE Practical Skills One Day Workshops

 

At some point in the life-cycle of an innovation, there is the possibility of crossing an invisible line called the tipping point.

This happens when enough people have experienced the benefits of the innovation and believe that the innovation is the future.  These lone innovators start to connect and build a new community.

It is an emergent behaviour of a complex adaptive system.


This week I experienced what could be a tipping point.

I attended the Q-Community launch event for the West Midlands that was held at the ICC in Birmingham … and it was excellent.

The invited speakers were both engaging and inspiring – boosting the emotional charge in the old engagement batteries; which have become rather depleted of late by the incessant wailing from the all-too-numerous peddlers of doom-and-gloom.

There was an opportunity to re-connect with fellow radicals who, over nearly two decades, have had the persistent temerity to suggest that improvement is necessary, is possible, have invested in learning how to do it, and have disproved the impossibility hypothesis.

There were new connections with like-minded people who want to both share what they know about the science of improvement and to learn what they do not.

And there were hand-outs, side-shows and break-outs.  Something for everyone.


The voice of the Q-Community will grow louder – and for it to be listened to it will need to be patiently and persistently broadcasting the news stories of what has been achieved, and how it was achieved, and who has demonstrated they can walk-the-talk.  News stories like this one:

Improving safety, flow, quality and affordability of unscheduled care of the elderly.


I sincerely hope that in the future, with the benefit of hindsight, we in the West Midlands will say – the 19th July 2017 was our Q-Community tipping point.

And I pledge to do whatever I can to help make that happen.

One of the most effective ways to inspire others is to demonstrate what is possible, and then to explain how it is possible.

And one way to do that is to use a simulation game.

There are many different forms of simulation game from the imagination playground games we remember as children, to sophisticated and highly realistic computer simulations.

The purpose is the same: to have the experience without the risk and cost of doing it for real; to learn from the experience; and to increase our chance of success in the real world.


Simulations are very effective educational tools because we can simplify, focus, practice, pause, rewind, and reflect.

They are also very effective exploration tools for developing our understanding of hows things work.  We need to know that before we can make things work better.


And anyone who has tried it will confirm: creating an effective and enjoyable simulation game is not easy. It takes passion, persistence and practice and many iterations to get it right.

And that in itself is a powerful learning experience.


This week the topic of simulations has cropped up several times.

Firstly, the hands-on simulations at the Flow Design Practical Skills Workshop and how they generated insight and inspiration.  The experience certainly fired imaginations and will hopefully lead to innovations. For more click here …

Secondly, the computer simulation called the “Save The NHS Game” which is designed to illustrate the complex and counter-intuitive behaviour of real systems.  The rookie crew “crashed” the simulated healthcare system, but that was OK, it was just a simulation.  In the process they learned a lot about how not to improve NHS productivity. For more click here …

And later the same day being a crash-test dummy for an innovative table-top simulation game using different sizes and shapes of pasta and an ice tray to illustrate the confusing concept of carve-out!  For more click here …

And finally, a fantastic conversation with Dr Bryn Baxendale from the Trent Simulation Centre about how simulation training has become a growing part of how we train individuals and teams, especially in clinical skills, safety and human factors.


In health care systems engineering we use simulation tools in the diagnosis, design and delivery phases of complex improvement-by-design projects. So learning how to design, build and verify the simulation tools we need is a core part advanced HCSE training.  For more click here …

Lots of simulation sTimulation. What a great week!

One of the questions we all ask ourselves, perhaps unconsciously, when we are considering change is: “What is in it for me?

And if we do not get a convincing enough answer, quickly enough, we move on.

Effective sales people know this, and anyone needing to engage and influence others needs to as well.


One approach is to ask the same questions as the person we seek to influence are asking themselves, perhaps unconsciously.

So if you have an interest in healthcare improvement … see if these questions resonate with you.

The Elephant in the Room is an English-language metaphorical idiom for an obvious problem or risk no one wants to discuss.

An undiscussable topic.

And the undiscussability is also undiscussable.

So the problem or risk persists.

And people come to harm as a result.

Which is not the intended outcome.

So why do we behave this way?

Perhaps it is because the problem looks too big and too complicated to solve in one intuitive leap, and we give up and label it a “wicked problem”.


The well known quote “When eating an elephant take one bite at a time” is attributed to Creighton Abrams, a US Chief of Staff.


It says that even seemingly “impossible” problems can be solved so long as we proceed slowly and carefully, in small steps, learning as we go.

And the continued decline of the NHS UK Unscheduled Care performance seems to be an Elephant-in-the-Room problem, as shown by the monthly A&E 4-hour performance over the last 10 years and the fact that this chart is not published by the NHS.

Red = England, Brown=Wales, Grey=N.Ireland, Purple=Scotland.


This week I experienced a bite of this Elephant being taken and chewed on.

The context was a Flow Design – Practical Skills – One Day Workshop and the design challenge posed to the eager delegates was to improve the quality and efficiency of a one stop clinic.

A seemingly impossible task because the delegates reported that the queues, delays and chaos that they experienced in the simulated clinic felt very realistic.

Which means that this experience is accepted as inevitable, and is impossible to improve without more resources, but financial cuts prevent that, so we have to accept the waits.


At the end of the day their belief had been shattered.

The queues, delays and chaos had evaporated and the cost to run the new one stop clinic design was actually less than the old one.

And when we combined the quality metrics with the cost metrics and calculated the measured improvement in productivity; the answer was over 70%!

The delegates experienced it all first-hand. They did the diagnosis, design, and delivery using no more than squared-paper and squeaky-pen.

And at the end they were looking at a glaring mismatch between their rhetoric and the reality.

The “impossible to improve without more money” hypothesis lay in tatters – it had been rationally, empirically and scientifically disproved.

I’d call that quite a big bite out of the Elephant-in-the-Room.


So if you have a healthy appetite for Elephant-in-the-Room challenges, and are not afraid to try something different, then there is a whole menu of nutritious food-for-thought at a FISH&CHIPs® practical skills workshop.

This is the now-infamous statement that Donald Rumsfeld made at a Pentagon Press Conference which triggered some good-natured jesting from the assembled journalists.

But there is a problem with it.

There is a fourth combination that he does not mention: the Unknown-Knowns.

Which is a shame because they are actually the most important because they cause the most problems.  Avoidable problems.


Suppose there is a piece of knowledge that someone knows but that someone else does not; then we have an unknown-known.

None of us know everything and we do not need to, because knowledge that is of no value to us is irrelevant for us.

But what happens when the unknown-known is of value to us, and more than that; what happens when it would be reasonable for someone else to expect us to know it; because it is our job to know.


A surgeon would be not expected to know a lot about astronomy, but they would be expected to know a lot about anatomy.


So, what happens if we become aware that we are missing an important piece of knowledge that is actually already known?  What is our normal human reaction to that discovery?

Typically, our first reaction is fear-driven and we express defensive behaviour.  This is because we fear the potential loss-of-face from being exposed as inept.

From this sudden shock we then enter a characteristic emotional pattern which is called the Nerve Curve.

After the shock of discovery we quickly flip into denial and, if that does not work then to anger (i.e. blame).  We ignore the message and if that does not work we shoot the messenger.


And when in this emotionally charged state, our rationality tends to take a back seat.  So, if we want to benefit from the discovery of an unknown-known, then we have to learn to bite-our-lip, wait, let the red mist dissipate, and then re-examine the available evidence with a cool, curious, open mind.  A state of mind that is receptive and open to learning.


Recently, I was reminded of this.


The context is health care improvement, and I was using a systems engineering framework to conduct some diagnostic data analysis.

My first task was to run a data-completeness-verification-test … and the data I had been sent did not pass the test.  There was some missing.  It was an error of omission (EOO) and they are the hardest ones to spot.  Hence the need for the verification test.

The cause of the EOO was an unknown-known in the department that holds the keys to the data warehouse.  And I have come across this EOO before, so I was not surprised.

Hence the need for the verification test.

I was not annoyed either.  I just fed back the results of the test, explained what the issue was, explained the cause, and they listened and learned.


The implication of this specific EOO is quite profound though because it appears to be ubiquitous across the NHS.

To be specific it relates to the precise details of how raw data on demand, activity, length of stay and bed occupancy is extracted from the NHS data warehouses.

So it is rather relevant to just about everything the NHS does!

And the error-of-omission leads to confusion at best; and at worst … to the following sequence … incomplete data =>  invalid analysis => incorrect conclusion => poor decision => counter-productive action => unintended outcome.

Does that sound at all familiar?


So, if would you like to learn about this valuable unknown-known is then I recommend the narrative by Dr Kate Silvester, an internationally recognised expert in healthcare improvement.  In it, Kate re-tells the story of her emotional roller-coaster ride when she discovered she was making the same error.


Here is the link to the full abstract and where you can download and read the full text of Kate’s excellent essay, and help to make it a known-known.

That is what system-wide improvement requires – sharing the knowledge.

Only a few parts of the NHS were adversely affected by the RansomWare cyber-attack on Friday 12th May 2017.

This well-known malware was designed to exploit a security loop-hole in out-of-date and poorly maintained computers still using the Windows XP operating system.

And just like virulent organisms and malignant cells … the loop-holes in our IT immune systems were exploited to cause infectious diseases and cancer!


The diagnosis and treatment of these acquired IT diseases is painful, expensive and it comes with no guarantee of a happy outcome.

Lesson: Proactive prevention is better than reactive cure!

And all it requires to achieve it is … a Checklist.


Prevention requires pre-emptive design, and to do this the system needs to be studied, and understood well enough for an early warning system (EWS) to be designed, tested and implemented.

Having an effective EWS also requires that the measured response to an EWS alert has been designed, tested and implemented as well.

The sensor and the effector are linked by something called a processor.

And the processor can be implemented using an easy-to-use, low-cost, effective tool called a Checklist.


The NHS was not cyber-attacked.  Parts of the NHS were more vulnerable than others to a well-known, endemic cyber-threat, and they were more vulnerable because they did not use an effective cyber-security checklist.  An error of omission.


Checklists are not recipes of how or why to do something.  They are primarily there to remind us to do what is required, and to not do what is not required.

But we need to refer to them … we need to befriend them … we need to create them and maintain them. They are our friends and they will protect us from harm.

And if we do that the we will reap the benefits of time and energy that are released in the future – to do with as we choose.

There is a Catch-22 in health care improvement and it goes a bit like this:

Most people are too busy fire-fighting the chronic chaos to have time to learn how to prevent the chaos, so they are stuck.

There is a deeper Catch-22 as well though:

The first step in preventing chaos is to diagnose the root cause and doing that requires experience, and we don’t have that experience available, and we are too busy fire-fighting to develop it.


Health care is improvement science in action – improving the physical and psychological health of those who seek our help. Patients.

And we have a tried-and-tested process for doing it.

First we study the problem to arrive at a diagnosis; then we design alternative plans to achieve our intended outcome and we decide which plan to go with; and then we deliver the plan.

Study ==> Plan ==> Do.

Diagnose  ==> Design & Decide ==> Deliver.

But here is the catch. The most difficult step is the first one, diagnosis, because there are many different illnesses and they often present with very similar patterns of symptoms and signs. It is not easy.

And if we make a poor diagnosis then all the action plans that follow will be flawed and may lead to disappointment and even harm.

Complaints and litigation follow in the wake of poor diagnostic ability.

So what do we do?

We defer reassuring our patients, we play safe, we request more tests and we refer for second opinions from specialists. Just to be on the safe side.

These understandable tactics take time, cost money and are not 100% reliable.  Diagnostic tests are usually precisely focused to answer specific questions but can have false positive and false negative results.

To request a broad batch of tests in the hope that the answer will appear like a rabbit out of a magician’s hat is … mediocre medicine.


This diagnostic dilemma arises everywhere: in primary care and in secondary care, and in non-urgent and urgent pathways.

And it generates extra demand, more work, bigger queues, longer delays, growing chaos, and mounting frustration, disappointment, anxiety and cost.

The solution is obvious but seemingly impossible: to ensure the most experienced diagnostician is available to be consulted at the start of the process.

But that must be impossible because if the consultants were seeing the patients first, what would everyone else do?  How would they learn to become more expert diagnosticians? And would we have enough consultants?


When I was a junior surgeon I had the great privilege to have the opportunity to learn from wise and experienced senior surgeons, who had seen it, and done it and could teach it.

Mike Thompson is one of these.  He is a general surgeon with a special interest in the diagnosis and treatment of bowel cancer.  And he has a particular passion for improving the speed and accuracy of the diagnosis step; because it can be a life-saver.

Mike is also a disruptive innovator and an early pioneer of the use of endoscopy in the outpatient clinic.  It is called point-of-care testing nowadays, but in the 1980’s it was a radically innovative thing to do.

He also pioneered collecting the symptoms and signs from every patient he saw, in a standard way using a multi-part printed proforma. And he invested many hours entering the raw data into a computer database.

He also did something that even now most clinicians do not do; when he knew the outcome for each patient he entered that into his database too – so that he could link first presentation with final diagnosis.


Mike knew that I had an interest in computer-aided diagnosis, which was a hot topic in the early 1980’s, and also that I did not warm to the Bayesian statistical models that underpinned it.  To me they made too many simplifying assumptions.

The human body is a complex adaptive system. It defies simplification.

Mike and I took a different approach.  We  just counted how many of each diagnostic group were associated with each pattern of presenting symptoms and signs.

The problem was that even his database of 8000+ patients was not big enough! This is why others had resorted to using statistical simplifications.

So we used the approach that an experienced diagnostician uses.  We used the information we had already gleaned from a patient to decide which question to ask next, and then the next one and so on.


And we always have three pieces of information at the start – the patient’s age, gender and presenting symptom.

What surprised and delighted us was how easy it was to use the database to help us do this for the new patients presenting to his clinic; the ones who were worried that they might have bowel cancer.

And what surprised us even more was how few questions we needed to ask arrive at a statistically robust decision to reassure-or-refer for further tests.

So one weekend, I wrote a little computer program that used the data from Mike’s database and our simple bean-counting algorithm to automate this process.  And the results were amazing.  Suddenly we had a simple and reliable way of using past experience to support our present decisions – without any statistical smoke-and-mirror simplifications getting in the way.

The computer program did not make the diagnosis, we were still responsible for that; all it did was provide us with reliable access to a clear and comprehensive digital memory of past experience.


What it then enabled us to do was to learn more quickly by exploring the complex patterns of symptoms, signs and outcomes and to develop our own diagnostic “rules of thumb”.

We learned in hours what it would take decades of experience to uncover. This was hot stuff, and when I presented our findings at the Royal Society of Medicine the audience was also surprised and delighted (and it was awarded the John of Arderne Medal).

So, we called it the Hot Learning System, and years later I updated it with Mike’s much bigger database (29,000+ records) and created a basic web-based version of the first step – age, gender and presenting symptom.  You can have a play if you like … just click HERE.


So what are the lessons here?

  1. We need to have the most experienced diagnosticians at the start of the improvement process.
  2. The first diagnostic assessment can be very quick so long as we have developed evidence-based heuristics.
  3. We can accelerate the training in diagnostic skills using simple information technology and basic analysis techniques.

And exactly the same is true in the health care system improvement.

We need to have an experienced health care improvement practitioner involved at the start, because if we skip this critical study step and move to plan without a correct diagnosis, then we will make errors, poor decisions, and counter-productive actions.  And then generate more work, more queues, more delays, more chaos, more distress and increased costs.

Exactly the opposite of what we want.

Q1: So, how do we develop experienced improvement practitioners more quickly?

Q2: Is there a hot learning system for improvement science?

A: Yes, there is. It can be found here.

Have you heard the phrase “you either love it or you hate it“?  It is called the Marmite Effect.

Improvement science has Marmite-like effect on some people, or more specifically, the theory part does.

Both evidence and experience show that most people prefer to learn-by-doing first; and then consolidate their learning with the minimum, necessary amount of supporting theory.

But that is not how we usually share what we know with others.  We usually attempt to teach the theory first, perhaps in the belief that it will speed up the process of learning.

Sadly, it usually has the opposite effect. Too much theory too soon often creates a barrier to engagement. It actually slows learning down! Which was not the impact we were intending.


The implications of this is that teachers of the science of improvement need to provide a range of different ways to engage with the subject.  Complementary ways.  And leave the choice of which suits whom … to the learner.

And the way to tell if it is working is … the sound of laughter.

Why is that?


Laughing is a complex behaviour that leaves us feeling happier. Which is good.

Comedians make a living from being able to trigger this behaviour in their audiences, and we will gladly part with hard cash when we know something will make us feel better.

And laughing is one of the healthiest ways to feel better!

So why do we laugh when we are learning?

It is believed that one trigger for the laughter reaction is the sudden shift from one perspective to another.  More specifically, a mental shift that relieves a growing emotional tension.  The punch line of a really good joke for example.

And later-in-life learning is often more a process of unlearning.

When we challenge a learned assumption with evidence and if we disprove it … we are unlearning.  And doing that generates emotional tension. We are often very attached to our unconscious assumptions and will usually resist them being challenged.

The way to unlearn effectively is to use the evidence of our own eyes to raise doubts about our unconscious assumptions.  We need to actively generate a bit of confusion.

Then, we resolve the apparent paradox by creatively shifting perspective, often with a real example, a practical explanation or a hands-on demonstration.

And when we experience the “Ah ha! Now I see!” reaction, and we emerge from the fog of confusion, we will relieve the emotional tension and our involuntary reaction is to laugh.

But if our teacher unintentionally triggers a Marmite effect; a “Yeuk, I am NOT enjoying this!” feeling, then we need to respect that, and step back, and adopt a different tack.


Over the last few months I have been experimenting with different approaches to introducing the principles of improvement-by-design.

And the results are clear.

A minority prefer to start with the abstract theory, and then apply it in practice.

The majority have various degrees of Marmite reaction to the theory, and some are so put off that they actively disengage.  But when they have an opportunity to see the same principles demonstrated in a concrete, practical way; they learn and laugh.

Unlearning-by-doing seems to work better for the majority.

So, if you want to have fun and learn how to deliver significant and sustained improvements … then the evidence points to this as the starting point …

… the Flow Design Practical Skills One Day Workshop.

And if you also want to dip into a bit of the tried-and-tested theory that underpins improvement-by-design then you can do that as well, either before or later (when it becomes necessary), or both.


So, to have lots of fun and learn some valuable improvement-by-design practical skills at the same time …  click here.

This week about thirty managers and clinicians in South Wales conducted two experiments to test the design of the Flow Design Practical Skills One Day Workshop.

Their collective challenge was to diagnose and treat a “chronically sick” clinic and the majority had no prior exposure to health care systems engineering (HCSE) theory, techniques, tools or training.

Two of the group, Chris and Jat, had been delegates at a previous ODWS, and had then completed their Level-1 HCSE training and real-world projects.

They had seen it and done it, so this experiment was to test if they could now teach it.

Could they replicate the “OMG effect” that they had experienced and that fired up their passion for learning and using the science of improvement?

Read on »

Chickens make interesting pets. They have personalities – no two are the same – and they produce something useful and valuable. Eggs. Yum yum!

But chickens are yummy too … especially to foxes. So we have a problem. We need to keep our ‘chucks’ safe and that means a fox-proof coop.

Here’s a picture of a chicken coop … looks great doesn’t it? You can just hear the happy clucks and taste the fresh eggs.

Have you any idea how complicated, difficult and expensive this would be to build from scratch?

Better not even try … just reach for the laptop and credit card and order a prefabricated one.  Just assembling the courier-delivered-flat-packed-made-in-China-from-renewable-forest-softwood coop will be enough of a DIY challenge!


We have had chickens for years and we have learned that they are very funny-feathered-characters-who-lay-eggs.

And we started with an old Wendy house, some softwood battening, some rolls of weld-mesh, a bag of screws and staples and a big dollop of suck-it-and-see.

The first attempt was Heath-Robinson but it worked OK.  The old Wendy house was transformed into a cosy coop and a safe-from-foxes chuck run.

And the eggs were delicious and nutritious.


But the arrow of time is relentless, and as with all organic things, the “rot had set in”.

The time had come for an update. Doing nothing was not an option.

Q: Start from scratch with a blank piece of paper and design and build a new coop and run (i.e. scrap the old one)? Or re-purpose what we have (i.e. cut out the rot, keep the good stuff and re-fashion something that is fit-for-purpose for years to come?

Oh, and we also need to keep-the-ship-afloat in the process – i.e. the keep the chucks safe-from-foxes and happily laying eggs.  That meant doing the project in one day.


What was interesting about this mini-transformation project was that I could apply exactly the same improvement framework as I would to a health care systems engineering one.

I had a clear problem (unsafe, semi-rotten chicken coop) and a clear purpose (fit-for-purpose and affordable coop and run).

Next I needed a diagnosis.  What was rotten and what was not?  And that required a bit of poking with a probe … and what I found was that most of the rot was hidden!

First I needed to study the problem (symptoms) and the purpose (required outcome) and the problem again (disease).

This was going to require some radical surgery!

With a clear destination and diagnosis it was now time to plan. For this I needed a robust design framework for exploring “radical” options – particularly those that open new opportunities that the old design prevented!  This is called “future-proofing”.

And the capital cost is always a factor – building a shiny, high-tech version of an old design that is no longer fit-for-purpose is a waste of capital investment and locks us into the past.


And remember, the innovative, fit-for-purpose, elegant, affordable design is just a dream when it is still only a plan.  Someone has to do the building work.  And it has to be feasible with the time, tools and skills available.  And all that needs to be considered at the design stage too!

With the benefit of hindsight, I have come to appreciate that the most valuable long-term investment is the new theory, new techniques, new tools and the new skills to use them. This is called “innovation”.


So with a diagnosis, a design, a sunny day, a sharpened-pencil-behind-the-ear, a just-in-time delivery of the bulkier building materials, a freshly charged power drill, and a hot cuppa … the work started.

It was going to be like performing a major operation.

The chucks were more than happy to be let out to scratch around in the garden; and groundwork always generates the opportunity for a creepy-crawly feast!  But safety comes first – foxes mainly hunt at night so in one daylight period I had to surgically excise the rot and then transform what was left into a safe space for the chucks to sleep.

When the study and plan work has been done diligently – the do phase is enjoyable.

If we skip the study phase and leap straight to plan with all the old assumptions (some rotten some not) still in place … the do phase is usually miserable! (No wonder many people have developed a high level of aversion to change!).


And the outcome?

Happy chucks, safely tucked up in their transformed, rot-free, safe-from-harm, coop and run.

The work is not quite finished – a new roof is awaiting installation but that is a quality issue not a safety one.

Safety always comes first.

And just look at how much rot had to be chopped out.

Any surgeon will tell you … “for the fastest recovery you have to cut out all the rot first“.

And that requires careful planning, courage, skill, a sharp blade, focus and … team work!

In medical training we have to learn about lots of things. That is one reason why it takes a long time to train a competent and confident clinician.

First, we learn the anatomy (structure) and the physiology (function) of the normal, healthy human.

Then we learn about how this amazingly complicated system can go wrong.  We learn about pathology.  And we do that so that we understand the relationship between the cause (disease) and the effect (symptoms and signs).

Then we learn about diagnostics – which is how to work backwards from the effects to the most likely cause(s).

And only then can we learn about therapeutics – the design and delivery of a treatment plan that we are confident will relieve the symptoms by curing the disease.

And we learn about prevention – how to avoid some illnesses (and delay others) by addressing the root causes earlier.  Much of the increase in life expectancy over the last 200 years has come from prevention, not from cure.


The NHS is an amazingly complicated system, and it too can go wrong.  It can exhibit a wide spectrum of symptoms and signs; medical errors, long delays, unhappy patients, burned-out staff, and overspent budgets.

But, there is no equivalent training in how to diagnose and treat a sick health care system.  And this is not acceptable, especially given that the knowledge of how to do this is already available.

It is called complex adaptive systems engineering (CASE).


Before the Renaissance, the understanding of how the body works was primitive and it was believed that illness was “God’s Will” so we had to just grin-and-bear (and pray).

The Scientific Revolution brought us new insights, profound theories, innovative techniques and capability-extending tools.  And the impact has been dramatic.  Those who do have access to this knowledge live better and longer than ever.  Those who do not … do not.

Our current understanding of how health care systems work is, to be blunt, medieval.  The current approaches amount to little more than rune reading, incantations and the prescription of purgatives and leeches.  And the impact is about as effective.

So we need to study the anatomy, physiology, pathology, diagnostics and therapeutics of complex adaptive systems like healthcare.  And most of all we need to understand how to prevent catastrophes happening in the first place.  We need the NHS to be immortal.


And this week a prototype complex adaptive pathology training system was tested … and it employed cutting-edge 21st Century technology: Pasta Twizzles.

The specific topic under scrutiny was variation.  A brain-bending concept that is usually relegated to the mystical smoke-and-mirrors world called “Sadistics”.

But no longer!

The Mists-of-Jargon and Fog-of-Formulae were blown away as we switched on the Fan-of-Facilitation and the Light-of-Simulation and went exploring.

Empirically. Pragmatically.


And what we discovered was jaw-dropping.

A disease called the “Flaw of Averages” and its malignant manifestation “Carveoutosis“.


And with our new knowledge we opened the door to a previously hidden world of opportunity and improvement.

Then we activated the Laser-of-Insight and evaporated the queues and chaos that, before our new understanding, we had accepted as inevitable and beyond our understanding or control.

They were neither. And never had been. We were deluding ourselves.

Welcome to the Resilient Design – Practical Skills – One Day Workshop.

Validation Test: Passed.

A story was shared this week.

A story of hope for the hard-pressed NHS, its patients, its staff and its managers and its leaders.

A story that says “We can learn how to fix the NHS ourselves“.

And the story comes with evidence; hard, objective, scientific, statistically significant evidence.


The story starts almost exactly three years ago when a Clinical Commissioning Group (CCG) in England made a bold strategic decision to invest in improvement, or as they termed it “Achieving Clinical Excellence” (ACE).

They invited proposals from their local practices with the “carrot” of enough funding to allow GPs to carve-out protected time to do the work.  And a handful of proposals were selected and financially supported.

This is the story of one of those proposals which came from three practices in Sutton who chose to work together on a common problem – the unplanned hospital admissions in their over 70’s.

Their objective was clear and measurable: “To reduce the cost of unplanned admissions in the 70+ age group by working with hospital to reduce length of stay.

Did they achieve their objective?

Yes, they did.  But there is more to this story than that.  Much more.


One innovative step they took was to invest in learning how to diagnose why the current ‘system’ was costing what it was; then learning how to design an improvement; and then learning how to deliver that improvement.

They invested in developing their own improvement science skills first.

They did not assume they already knew how to do this and they engaged an experienced health care systems engineer (HCSE) to show them how to do it (i.e. not to do it for them).

Another innovative step was to create a blog to make it easier to share what they were learning with their colleagues; and to invite feedback and suggestions; and to provide a journal that captured the story as it unfolded.

And they measured stuff before they made any changes and afterwards so they could measure the impact, and so that they could assess the evidence scientifically.

And that was actually quite easy because the CCG was already measuring what they needed to know: admissions, length of stay, cost, and outcomes.

All they needed to learn was how to present and interpret that data in a meaningful way.  And as part of their IS training,  they learned how to use system behaviour charts, or SBCs.


By Jan 2015 they had learned enough of the HCSE techniques and tools to establish the diagnosis and start to making changes to the parts of the system that they could influence.


Two years later they subjected their before-and-after data to robust statistical analysis and they had a surprise. A big one!

Reducing hospital mortality was not a stated objective of their ACE project, and they only checked the mortality data to be sure that it had not changed.

But it had, and the “p=0.014” part of the statement above means that the probability that this 20.0% reduction in hospital mortality was due to random chance … is less than 1.4%.  [This is well below the 5% threshold that we usually accept as “statistically significant” in a clinical trial.]

But …

This was not a randomised controlled trial.  This was an intervention in a complicated, ever-changing system; so they needed to check that the hospital mortality for comparable patients who were not their patients had not changed as well.

And the statistical analysis of the hospital mortality for the ‘other’ practices for the same patient group, and the same period of time confirmed that there had been no statistically significant change in their hospital mortality.

So, it appears that what the Sutton ACE Team did to reduce length of stay (and cost) had also, unintentionally, reduced hospital mortality. A lot!


And this unexpected outcome raises a whole raft of questions …


If you would like to read their full story then you can do so … here.

It is a story of hunger for improvement, of humility to learn, of hard work and of hope for the future.